4 July 2010

Minimum Edge-Ranking Spanning Tree Problem of Series-Parallel Graphs

Minimum Edge-Ranking Spanning Tree Problem of Series-Parallel Graphs  by Ahmed Shamsul Arefin, VDM Verlag Dr. Müller Aktiengesellschaft & Co. KG, Germany, 2009 ISBN- 978-3-639-19684-9

This Book deals with the NP-Completeness and an approximation algorithm for finding minimum edge ranking spanning tree (MERST) on series-parallel graphs. An edge-ranking is optimal if the least number of distinct labels among all possible edge-rankings are used by it. The edge-ranking problem is to find an optimal edge-ranking of a given graph. The minimum edge-ranking spanning tree problem is to find a spanning tree of a graph G whose edge-ranking is minimum. The minimum edge-ranking spanning tree problem of graphs has important applications like scheduling the parallel assembly of a complex multi-part product from its components and relational database. Although polynomial-time algorithm to solve the minimum edge-ranking spanning tree problem on series- parallel graphs with bounded degrees has been found, but for the unbounded degrees no polynomial-time algorithm is known. In this work, we have proved that the minimum edge-ranking spanning tree problem for general series-parallel graph is NP-Complete and designed an efficient approximation algorithm which will find a near-optimal solution of the problem.

Download / Buy from Amazon

Tags:

You may have missed:

Comments are closed.